0 | REM (C) G.J. Smit, Nijmegen, Nederland |
---|---|
1 | REM This software is published under the GNU General Public License v3.0 |
2 | REM www.dbphysics.org |
3 | REM Program purpose: db movement analysis |
4 | |
5 | KEY(1) ON: ON KEY(1) GOSUB afrondschoonscherm |
6 | KEY(2) ON: ON KEY(2) GOSUB andermode |
7 | KEY(3) ON: ON KEY(3) GOSUB nieuwecoordinaten |
8 | KEY(4) ON: ON KEY(4) GOSUB windowgrootte |
9 | KEY(5) ON: ON KEY(5) GOSUB sterktezwaartekracht |
10 | KEY(6) ON: ON KEY(6) GOSUB nieuwaantaldeeltjes |
11 | KEY(7) ON: ON KEY(7) GOSUB lijnmetwis |
12 | KEY(8) ON: ON KEY(8) GOSUB lijnzonderwis |
13 | KEY(9) ON: ON KEY(9) GOSUB willekeuroud |
14 | KEY(10) ON: ON KEY(10) GOSUB willekeurnieuw |
15 | |
16 | |
17 | DIM x(100, 103), y(100, 103), z(100, 103), xfz(100), yfz(100), zfz(100) |
18 | DIM x2d(200), y2d(200) |
19 | |
20 | SCREEN 12, 0: CLS |
21 | xyz = 100 |
22 | mfz = .1 |
23 | aantal = 3 |
24 | scherm = 1 |
25 | begincord = 1 |
26 | lijn = 0 |
27 | willoud = 100 |
28 | willnieuw = 1 |
29 | wg = 3 * willoud |
30 | afrond = 0 |
31 | |
32 | WINDOW (-wg, wg)-(wg, -wg) |
33 | |
34 | prog = 1 |
35 | |
36 | WHILE prog > 0 |
37 | |
38 | CLS |
39 | |
40 | FOR tel = 0 TO aantal - 1 |
41 | x(tel, 0) = (RND(1) * 2 * willoud) - willoud: x(tel, 1) = x(tel, 0) + (RND(1) * 2 * willnieuw) - willnieuw |
42 | y(tel, 0) = (RND(1) * 2 * willoud) - willoud: y(tel, 1) = y(tel, 0) + (RND(1) * 2 * willnieuw) - willnieuw |
43 | z(tel, 0) = (RND(1) * 2 * willoud) - willoud: z(tel, 1) = z(tel, 0) + (RND(1) * 2 * willnieuw) - willnieuw |
44 | NEXT tel |
45 | |
46 | IF begincord = 1 THEN GOSUB bcord |
47 | |
48 | GOSUB status |
49 | |
50 | prog = 2 |
51 | |
52 | WHILE prog > 1 |
53 | |
54 | FOR tel1 = 0 TO aantal - 1 |
55 | x(tel1, 2) = x(tel1, 1) - x(tel1, 0) |
56 | y(tel1, 2) = y(tel1, 1) - y(tel1, 0) |
57 | z(tel1, 2) = z(tel1, 1) - z(tel1, 0) |
58 | FOR tel2 = tel1 TO aantal - 1 |
59 | x(tel1, 3 + tel1) = x(tel2, 1) - x(tel1, 1) |
60 | y(tel1, 3 + tel1) = y(tel2, 1) - y(tel1, 1) |
61 | z(tel1, 3 + tel1) = z(tel2, 1) - z(tel1, 1) |
62 | x(tel2, 3 + tel2) = -x(tel1, 3 + tel1) |
63 | y(tel2, 3 + tel2) = -y(tel1, 3 + tel1) |
64 | z(tel2, 3 + tel2) = -z(tel1, 3 + tel1) |
65 | x(tel1, 3 + aantal + tel1) = ABS(x(tel1, 3 + tel1)) |
66 | y(tel1, 3 + aantal + tel1) = ABS(y(tel1, 3 + tel1)) |
67 | z(tel1, 3 + aantal + tel1) = ABS(z(tel1, 3 + tel1)) |
68 | x(tel2, 3 + aantal + tel2) = ABS(x(tel2, 3 + tel2)) |
69 | y(tel2, 3 + aantal + tel2) = ABS(y(tel2, 3 + tel2)) |
70 | z(tel2, 3 + aantal + tel2) = ABS(z(tel2, 3 + tel2)) |
71 | NEXT tel2 |
72 | NEXT tel1 |
73 | |
74 | FOR tel1 = 0 TO aantal - 1 |
75 | xfz(tel1) = 0 |
76 | yfz(tel1) = 0 |
77 | zfz(tel1) = 0 |
78 | FOR tel2 = 0 TO aantal - 1 |
79 | IF x(tel1, 3 + aantal + tel2) > 0 THEN xfz(tel1) = xfz(tel1) + x(tel1, 3 + tel2) * mfz / x(tel1, 3 + aantal + tel2) |
80 | IF y(tel1, 3 + aantal + tel2) > 0 THEN yfz(tel1) = yfz(tel1) + y(tel1, 3 + tel2) * mfz / y(tel1, 3 + aantal + tel2) |
81 | IF z(tel1, 3 + aantal + tel2) > 0 THEN zfz(tel1) = zfz(tel1) + z(tel1, 3 + tel2) * mfz / z(tel1, 3 + aantal + tel2) |
82 | NEXT tel2 |
83 | x(tel1, 0) = x(tel1, 1) |
84 | IF afrond = 0 THEN x(tel1, 1) = x(tel1, 0) + x(tel1, 2) + xfz(tel1) ELSE x(tel1, 1) = INT(x(tel1, 0) + x(tel1, 2) + xfz(tel1)) |
85 | y(tel1, 0) = y(tel1, 1) |
86 | IF afrond = 0 THEN y(tel1, 1) = y(tel1, 0) + y(tel1, 2) + yfz(tel1) ELSE y(tel1, 1) = INT(y(tel1, 0) + y(tel1, 2) + yfz(tel1)) |
87 | z(tel1, 0) = z(tel1, 1) |
88 | IF afrond = 0 THEN z(tel1, 1) = z(tel1, 0) + z(tel1, 2) + zfz(tel1) ELSE z(tel1, 1) = INT(z(tel1, 0) + z(tel1, 2) + zfz(tel1)) |
89 | NEXT tel1 |
90 | |
91 | midx = 0 |
92 | midy = 0 |
93 | midz = 0 |
94 | |
95 | FOR tel = 0 TO aantal - 1 |
96 | midx = midx + x(tel, 1) |
97 | midy = midy + y(tel, 1) |
98 | midz = midz + z(tel, 1) |
99 | NEXT tel |
100 | |
101 | midx = midx / aantal |
102 | midy = midy / aantal |
103 | midz = midz / aantal |
104 | |
105 | |
106 | w2dx = midy - midx * .5 |
107 | w2dy = midz - midx * .5 |
108 | |
109 | IF lijn = 2 THEN GOSUB wislijn: |
110 | |
111 | FOR tel = 0 TO aantal - 1 |
112 | x2d(tel) = y(tel, 1) - x(tel, 1) * .5 |
113 | y2d(tel) = z(tel, 1) - x(tel, 1) * .5 |
114 | NEXT tel |
115 | |
116 | WINDOW (-wg + w2dx, wg + w2dy)-(wg + w2dx, -wg + w2dy) |
117 | |
118 | IF lijn = 0 THEN GOSUB tekenpunt: ELSE GOSUB tekenlijn: |
119 | |
120 | WEND |
121 | WEND |
122 | |
123 | andermode: |
124 | scherm = scherm + 1 |
125 | IF scherm > 2 THEN scherm = 0 |
126 | IF scherm = 0 THEN SCREEN 9, 0: WIDTH 80, 43: COLOR 1, 10 |
127 | IF scherm = 1 THEN SCREEN 12: WIDTH 80, 60 |
128 | IF scherm = 2 THEN SCREEN 13 |
129 | GOSUB status |
130 | RETURN |
131 | |
132 | afrondschoonscherm: |
133 | IF afrond = 0 THEN afrond = 1 ELSE afrond = 0 |
134 | GOSUB status |
135 | RETURN |
136 | |
137 | nieuwecoordinaten: |
138 | prog = 1 |
139 | CLS |
140 | RETURN |
141 | |
142 | sterktezwaartekracht: |
143 | PRINT "Mate van zwaartekracht is:"; mfz |
144 | INPUT "Nieuwe mate:", mfz |
145 | GOSUB status |
146 | RETURN |
147 | |
148 | nieuwaantaldeeltjes: |
149 | PRINT "Aantal deeltjes is:"; aantal |
150 | INPUT "Nieuw aantal:", aantal |
151 | IF aantal < 1 THEN aantal = 1 |
152 | IF aantal > 50 THEN aantal = 50 |
153 | CLS |
154 | prog = 1 |
155 | RETURN |
156 | |
157 | windowgrootte: |
158 | PRINT "Windowgrootte is:"; wg |
159 | INPUT "Nieuwe grootte:", wg |
160 | IF wg < 10 THEN wg = 10 |
161 | IF wg > 500 THEN wg = 500 |
162 | GOSUB status: |
163 | RETURN |
164 | |
165 | willekeuroud: |
166 | PRINT "Randomize oude co�rdinaat is:"; willoud |
167 | INPUT "Nieuwe randomize factor:"; willoud |
168 | IF willoud < 1 THEN willoud = 1 |
169 | IF willoud > 10000 THEN willoud = 10000 |
170 | wg = 3 * willoud |
171 | CLS |
172 | prog = 1 |
173 | RETURN |
174 | |
175 | willekeurnieuw: |
176 | PRINT "Randomize nieuwe co�rdinaat is:"; willnieuw |
177 | INPUT "Nieuwe randomize factor:"; willnieuw |
178 | IF willnieuw < .0000001 THEN willoud = .0000001 |
179 | IF willnieuw > 1000 THEN willnieuw = 1000 |
180 | CLS |
181 | prog = 1 |
182 | RETURN |
183 | |
184 | |
185 | lijnzonderwis: |
186 | IF lijn = 1 THEN lijn = 0 ELSE lijn = 1 |
187 | CLS |
188 | IF lijn = 0 THEN GOSUB status: |
189 | RETURN |
190 | |
191 | lijnmetwis: |
192 | IF lijn = 2 THEN lijn = 0 ELSE lijn = 2 |
193 | CLS |
194 | IF lijn = 0 THEN GOSUB status: |
195 | RETURN |
196 | |
197 | |
198 | bcord: |
199 | begincord = 0 |
200 | x(0, 0) = xyz: x(0, 1) = xyz |
201 | y(0, 0) = 0: y(0, 1) = -.9 |
202 | z(0, 0) = 0: z(0, 1) = .9 |
203 | x(1, 0) = 0: x(1, 1) = .9 |
204 | y(1, 0) = xyz: y(1, 1) = xyz |
205 | z(1, 0) = 0: z(1, 1) = -.9 |
206 | x(2, 0) = 0: x(2, 1) = -.9 |
207 | y(2, 0) = 0: y(2, 1) = .9 |
208 | z(2, 0) = xyz: z(2, 1) = xyz |
209 | |
210 | RETURN |
211 | |
212 | tekenpunt: |
213 | |
214 | FOR tel = 0 TO aantal - 1 |
215 | PSET (x2d(tel), y2d(tel)), 7 + tel |
216 | NEXT tel |
217 | RETURN |
218 | |
219 | tekenlijn: |
220 | FOR tel1 = 0 TO aantal - 1 |
221 | FOR tel2 = tel1 TO aantal - 1 |
222 | LINE (x2d(tel1), y2d(tel1))-(x2d(tel2), y2d(tel2)), 2 + tel1 + tel2 |
223 | NEXT tel2 |
224 | NEXT tel1 |
225 | RETURN |
226 | |
227 | wislijn: |
228 | CLS |
229 | RETURN |
230 | |
231 | status: |
232 | CLS |
233 | IF scherm = 0 THEN PRINT "EGA (16k)" |
234 | IF scherm = 1 THEN PRINT "VGA (16k)" |
235 | IF scherm < 2 THEN PRINT "Window-grootte :"; wg |
236 | IF scherm < 2 THEN PRINT "Sterkte Fzwaarte:"; mfz |
237 | IF scherm < 2 THEN PRINT "Aantal 1db's :"; aantal |
238 | IF scherm < 2 THEN PRINT "r_oud :"; willoud |
239 | IF scherm < 2 THEN PRINT "r_nieuw :"; willnieuw |
240 | IF scherm < 2 THEN PRINT "Afronding c_oud :"; afrond |
241 | RETURN |
242 | |
243 |

This software is published under the GNU General Public License v3.0.

Internal movement of a quark.
Coding the dimensional basic
The separate fundamental forces of nature: – the strong interaction, the electromagnetic interaction, the weak interaction and the gravitational interaction – are calculatable with one formula out of one principle. The statistical math of the quantum theory is set aside in favor of a goniometric approach. Gravitation is the only force that matters and the strong force, the electromagnetic force and the weak force can be explained out of gravitation, while gravity itself is only caused by the curvature of a mass, corresponding with a certain amount of bending of spacetime.The axiom is that the most elementary particle in existence is the dimensional basic (db or








The formula for the extent of spacetime curvature around a


In the formula: x, y, z, are coordinates in spacetime [m], Kr = curvature [m-1].
Formula (0) describes the relative lessened extent of curvature of spacetime surrounding the

The distance between the various






The






The observed forces (strong, electromagnetic, weak and gravitation) have the same origin. The cause of these forces are because of the characteristics of a singular


Figure 1: The tracks of two interacting

(Original: Deflection of the tracks of a photon close to an object with a heavy mass).

In figure 1 is shown how the movement tracks of photons react to the event horizon of a black hole. The same regularity applies to a binary black hole system. This is equal to the movement tracks of two






Figure 2: The movement tracks of nine


The second model that has been developed is the Borland C computer plot program ‘Einstein’. This computer program has been developed to show how spacetime around a

Just like one







The extent of bending of spacetime is calculated using formula (0), where the extent of curvature on a specific position of spacetime is being calculated. A bigger curvature means that spacetime is more bended, whereas a smaller curvature means that spacetime is less bended.
An example of this is shown in figure 3. In figure 3 the plot of a cube of spacetime is shown. The Einsteinian bending of a cube of spacetime is made visual. While figure 3a shows no bending of spacetime because of the absence of a






Figure 3: The bending of a cube of spacetime under the influence of a



3a. Uncurbed (linear) cube of spacetime. 3b. Cube of spacetime curbed by the presence of a

Conclusion: The Newtonian laws represent the straight movement paths as being caused by the bending of spacetime, just like Einstein made clear. Thus Newton’s laws of gravity apply to the movement paths of the


Both computer programs together represent the movement and character of the




Below the sources codes of the Borland C computer programs ‘Newton’ and ‘Einstein’ can be seen, while not making a choice shows a MS Quick Basic example of

Download article (PDF):
Coding the dimensional basic
Download code (TXT):
dbmove.bas newton.cpp einstein.cpp
Show code:
Program Newton Program Einstein